A car in an amusement park ride rolls without friction around a track (Fig. P7.42). The hB car starts from rest at point A at a CR height h above the bottom of the loop. Treat the car as a particle. (a) What is the minimum value of h (in terms of R) such that the car moves around the loop without falling off at the top (point B)

Respuesta :

Answer:

[tex]h>\dfrac{5}{2}R[/tex]

Explanation:

Given that

Height = h

Radius = R

From energy conservation

[tex]KE_A+U_A=KE_B+U_B[/tex]

At point B

The minimum speed to complete the   the circle

[tex]V_B=\sqrt{gR}\ m/s[/tex]

So the kinetic energy at point B

[tex]KE_B=\dfrac{1}{2}mV^2[/tex]

[tex]KE_B=\dfrac{1}{2}mgR[/tex]

[tex]KE_A+U_A=KE_B+U_B[/tex]

[tex]0+mgh=\dfrac{1}{2}mgR+2mgR[/tex]

Without falling off at the top (point B)

[tex]0+mgh>\dfrac{1}{2}mgR+2mgR[/tex]

[tex]mg(h-2R)>\dfrac{1}{2}mgR[/tex]

[tex]g(h-2R)>\dfrac{1}{2}gR[/tex]

[tex]h>\dfrac{5}{2}R[/tex]

Ver imagen Netta00
ACCESS MORE