Respuesta :
Answer:
Perimeter of ABCD = 44.
Step-by-step explanation:
If Figure ABCD is a parallelogram, then its opposite sides are equal in length.
Perimeter of parallelogram ABCD = 2 ( sum of its adjacent sides)
Now since ABCD is a parallelogram then, AB = CD and BC = AD.
Given: [tex]AB = 4y-2, BC = 2x + 2, CD = 2y + 6 and AD = 3x-1[/tex]
Now since [tex]AB = CD\ \ therefore,[/tex]
[tex]4y-2 = 2y + 6\\4y - 2y = 6 + 2\\2y = 8\\y = 4[/tex]
In the same way,[tex]BC = AD, therefore[/tex]
[tex]2x+2 = 3x -1 \\3x-2x=2+1\\x=3[/tex]
Now perimeter of ABCD = [tex]2(AB + BC)[/tex]
= [tex]2( 4y-2 +2x+2)[/tex]
=[tex]2(4y+2x)[/tex]
Now by substituting the values of x and y in above expression,
[tex]2(4y+2x) \\2\left (4(4)+2(3) \right )\\2(16+6) =2(22) = 44[/tex]