Answer:
0.2 nm
Explanation:
As we know that the energy of the nth level of one dimensional potential box is,
[tex]E_{n}=\frac{h^{2}n^{2}}{8mL^{2} }[/tex]
And also it is known that,
[tex]E=\frac{p^{2} }{2m}[/tex]
Put this in the above equation.
[tex]\frac{p^{2} }{2m}=\frac{h^{2}n^{2}}{8mL^{2} }\\p=\frac{hn }{2L}[/tex]
Now, de Broglie wavelength is,
[tex]\lambda=\frac{h}{p}[/tex]
Therefore,
[tex]\lambda=\frac{h2L}{n h } \\\lambda=\frac{2L}{n }[/tex]
Given that, the width of 1 dimension box is,
[tex]L=3\times 10^{-10}m[/tex]
For the second excited state n=3,
[tex]\lambda=\frac{2\times 3\times 10^{-10}m}{3}\\\lambda=2\times 10^{-10}m\\\lambda=0.2nm[/tex]
De Broglie wavelength of the particle is 0.2 nm.