Respuesta :
Answer:
Explanation:[tex]1.1993 kg-m^2/s[/tex]
Given
length of hour hand is 2.7m
length if minute hand is 4.5m
And Moment of inertia of a rod about its one of a end [tex]I=\frac{ml^2}{3}[/tex]
[tex]\omega [/tex]for hour hand is
[tex]\omega =\frac{2\pi }{12\cdot 3600} rad/s[/tex]
Angular speed for minute hand [tex]=frac{2\pi }{3600}[/tex]
Angular moment(L) is given [tex]I\omega [/tex]
[tex]L_{minute}=\frac{100\times 4.5^2}{3}\times frac{2\pi }{3600}[/tex]
[tex]L_{minute}=1.178[/tex]
For hour hand
[tex]L_{hour}=\frac{ml^2}{3}\omega [/tex]
[tex]L_{hour}=\frac{60\times 2.7^2}{3}\times \frac{2\pi }{12\cdot 3600}[/tex]
[tex]L_{hour}=0.0212 kg-m^2/s[/tex]
[tex]L_{total}=1.1993 kg-m^2/s[/tex]
Answer:
The total angular momentum of these hands is 1.20 kg m²/s.
Explanation:
Given that,
Length of hour hand = 2.70 m
Length of minute hand = 4.50 m
Mass of hour hand = 60.0 kg
Mass of minute hand = 100 kg
We need to calculate the total angular momentum
Using formula of angular momentum
[tex]L=I_{k}\omega_{k}+I_{m}\omega_{m}[/tex]
[tex]L=(\dfrac{ml_{h}^2}{3})\times\dfrac{2\pi}{T}+\dfrac{ml_{m}^2}{3}\times\dfrac{2\pi}{T}[/tex]
Where, [tex]l_{k}[/tex] = length of hour hand
[tex]l_{m}[/tex]=length of minute hand
Put the value into the formula
[tex]L=\dfrac{60.0\times(2.70)^2}{3}\times\dfrac{2\pi}{12\times3600}+\dfrac{100\times(4.50)^2}{3}\times\dfrac{2\pi}{3600}[/tex]
[tex]L=1.199 = 1.20\ kg m^2/s[/tex]
Hence, The total angular momentum of these hands is 1.20 kg m²/s.