Answer:
Part 1) [tex]RS=\sqrt{34}\ units[/tex]
Part 2) [tex]CD=\sqrt{125}\ units[/tex]
Part 3) The coordinates of endpoint C are (13,5)
Step-by-step explanation:
Part 1) The endpoints of line RS are R(1, -3) and S(4,2). Find RS
we now that
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
substitute the values
[tex]RS=\sqrt{(2+3)^{2}+(4-1)^{2}}[/tex]
[tex]RS=\sqrt{(5)^{2}+(3)^{2}}[/tex]
[tex]RS=\sqrt{34}\ units[/tex]
Part 2) The endpoints of line CD are C(-8,-1) and D(2,4). Find CD
we now that
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
substitute the values
[tex]CD=\sqrt{(4+1)^{2}+(2+8)^{2}}[/tex]
[tex]CD=\sqrt{(5)^{2}+(10)^{2}}[/tex]
[tex]CD=\sqrt{125}\ units[/tex]
Part 3) The midpoint of line AC is M(5,6). One endpoint is A(-3,7). Find the coordinates of endpoint C
The formula to calculate the midpoint between two points is equal to
[tex]M=(\frac{x1+x2}{2},\frac{y1+y2}{2})[/tex]
Let
(x2,y2)-------> the coordinates of point C
(x1,y1) -------> the coordinates of point A
substitute the given values
[tex](5,6)=(\frac{-3+x2}{2},\frac{7+y2}{2})[/tex]
write the equations
[tex]\frac{-3+x2}{2}=5\\ \\-3+x2=10\\ \\ x2=10+3\\ \\x2=13[/tex]
[tex]\frac{7+y2}{2}=6\\\\ 7+y2=12\\ \\ y2=12-7\\ \\y2=5[/tex]
therefore
The coordinates of endpoint C are (13,5)