Answer:
Part a)
[tex]\phi = 2.76 \times 10^{-7} T m^2[/tex]
Part B)
[tex]M = 5.52 \times 10^{-5} H[/tex]
Part C)
[tex]EMF = 0.1 V/s[/tex]
Explanation:
Part a)
Magnetic field due to a long ideal solenoid is given by
[tex]B = \mu_0 n i[/tex]
n = number of turns per unit length
[tex]n = \frac{N}{L}[/tex]
[tex]n = \frac{350}{0.20}[/tex]
[tex]n = 1750 turn/m[/tex]
now we know that magnetic field due to solenoid is
[tex]B = (4\pi \times 10^{-7})(1750)(0.100)[/tex]
[tex]B = 2.2 \times 10^{-4} T[/tex]
Now magnetic flux due to this magnetic field is given by
[tex]\phi = B.A[/tex]
[tex]\phi = (2.2 \times 10^{-4})(\pi r^2)[/tex]
[tex]\phi = (2.2 \times 10^{-4})(\pi(0.02)^2)[/tex]
[tex]\phi = 2.76 \times 10^{-7} T m^2[/tex]
Part B)
Now for mutual inductance we know that
[tex]\phi_{total} = M i[/tex]
[tex]\phi_{total} = N\phi[/tex]
[tex]\phi_{total} = 20(2.76 \times 10^{-4}) [/tex]
[tex]\phi_{total} = 5.52 \times 10^{-6}[/tex]
now we have
[tex]M = \frac{5.52 \times 10^{-6}}{0.100}[/tex]
[tex]M = 5.52 \times 10^{-5} H[/tex]
Part C)
As we know that induced EMF is given as
[tex]EMF = M \frac{di}{dt}[/tex]
[tex]EMF = 5.52 \times 10^{-5} (1800)[/tex]
[tex]EMF = 0.1 V/s[/tex]