Respuesta :
Answer:
material work function is 0.956 eV
Explanation:
given data
red wavelength 651 nm
green wavelength 521 nm
photo electrons = 1.50 × maximum kinetic energy
to find out
material work function
solution
we know by Einstein photo electric equation that is
for red light
h ( c / λr ) = Ф + kinetic energy
for green light
h ( c / λg ) = Ф + 1.50 × kinetic energy
now from both equation put kinetic energy from red to green
h ( c / λg ) = Ф + 1.50 × (h ( c / λr ) - Ф)
Ф =( hc / 0.50) × ( 1.50/ λr - 1/ λg)
put all value
Ф =( 6.63 ×[tex]10^{-34}[/tex] (3 ×[tex]10^{8}[/tex] ) / 0.50) × ( 1.50/ λr - 1/ λg)
Ф =( 6.63 ×[tex]10^{-34}[/tex] (3 ×[tex]10^{8}[/tex] ) / 0.50 ) × ( 1.50/ 651×[tex]10^{-9}[/tex] - 1/ 521 ×[tex]10^{-9}[/tex])
Ф = 1.5305 ×[tex]10^{-19}[/tex] J × ( 1ev / 1.6 ×[tex]10^{-19}[/tex] J )
Ф = 0.956 eV
material work function is 0.956 eV
Given:
wavelength of red light, [tex]\lambda _{R} = 651 nm[/tex]
wavelength of red light, [tex]\lambda _{G} = 521 nm[/tex]
Kinetic energy of green light, [tex]K.E _{G} = 1.5K.E_{max}[/tex]
Solution:
To calculate the work function of the material, [tex]\phi[/tex]
of the material can be calculated by using Einstein's equation for photoelectric effect:
[tex]K.E = \frac{hc}{\lambda } - \phi[/tex] (1)
where,
h = Plank's constant = [tex]6.64\times 10^{-34} J-s[/tex]
[tex]\lambda [/tex] = wavelength of light
[tex]\phi [/tex] = work function of material
c = speed of light in vacuum = [tex]3\times 10^{8} m/s[/tex]
Now, for red light:
[tex]K.E_{max} = \frac{hc}{\lambda_{R} } - \phi[/tex] (2)
Now, for green light:
[tex]1.5K.E_{max} = \frac{hc}{\lambda_{G}} - \phi[/tex]
[tex]K.E_{max} = \frac{2}{3}\frac{hc}{\lambda_{G} } - \phi[/tex] (3)
Using eqn (2) and (3):
[tex]\frac{1}{3}\phi = hc(\frac{1}{\lambda R} - \frac{2}{3\lambda_{G}})[/tex]
[tex]\phi = 6.64\times 10^{-34}\times 3\times 10^{8}(\frac{1}{651\times 10^{-9}} - \frac{2}{3\times 521^{-9}})[/tex]
[tex]\phi = 1.532\times 10^{-19} J[/tex]
[tex]\phi = \frac{1.532\times 10^{-19}}{1.6\times 10^{-19}}[/tex]
[tex]\phi = 0.958 eV[/tex]
Answer:
Work function of the material:
[tex]\phi = 1.532\times 10^{-19} J[/tex] or 0.958 eV