Red light of wavelength 651 nm produces photoelectrons from a certain photoemissive material. Green light of wavelength 521 nm produces photoelectrons from the same material with 1.50 times the maximum kinetic energy. What is the material's work function?

Respuesta :

Answer:

material work function is 0.956 eV

Explanation:

given data

red wavelength 651 nm

green wavelength 521 nm

photo electrons = 1.50 × maximum kinetic energy

to find out

material work function

solution

we know by Einstein photo electric equation  that is

for red light

h ( c / λr ) = Ф +  kinetic energy

for green light

h ( c / λg ) = Ф +  1.50 × kinetic energy

now from both equation put kinetic energy from red to green

h ( c / λg ) = Ф +  1.50 × (h ( c / λr ) - Ф)

Ф =( hc / 0.50) × ( 1.50/ λr  - 1/ λg)

put all value

Ф =( 6.63 ×[tex]10^{-34}[/tex] (3 ×[tex]10^{8}[/tex] )  / 0.50) × ( 1.50/ λr  - 1/ λg)

Ф =( 6.63 ×[tex]10^{-34}[/tex] (3 ×[tex]10^{8}[/tex] ) / 0.50 ) × ( 1.50/ 651×[tex]10^{-9}[/tex]   - 1/ 521 ×[tex]10^{-9}[/tex])

Ф = 1.5305  ×[tex]10^{-19}[/tex] J  × ( 1ev / 1.6 ×[tex]10^{-19}[/tex] J )

Ф = 0.956 eV

material work function is 0.956 eV

Given:

wavelength of red light, [tex]\lambda _{R} = 651 nm[/tex]

wavelength of red light, [tex]\lambda _{G} = 521 nm[/tex]

Kinetic energy of green light, [tex]K.E _{G} = 1.5K.E_{max}[/tex]

Solution:

To calculate the work function of the material, [tex]\phi[/tex]

of the material can be calculated by using Einstein's equation for photoelectric effect:

[tex]K.E = \frac{hc}{\lambda } - \phi[/tex]                                    (1)

where,

h = Plank's constant = [tex]6.64\times 10^{-34} J-s[/tex]

[tex]\lambda [/tex] = wavelength of light

[tex]\phi [/tex] = work function of material

c = speed of light in vacuum =  [tex]3\times 10^{8} m/s[/tex]

Now, for red light:

[tex]K.E_{max} = \frac{hc}{\lambda_{R} } - \phi[/tex]                   (2)

Now, for green light:

[tex]1.5K.E_{max} = \frac{hc}{\lambda_{G}} - \phi[/tex]

[tex]K.E_{max} = \frac{2}{3}\frac{hc}{\lambda_{G} } - \phi[/tex]     (3)

Using eqn (2) and (3):

[tex]\frac{1}{3}\phi = hc(\frac{1}{\lambda R} - \frac{2}{3\lambda_{G}})[/tex]

[tex]\phi = 6.64\times 10^{-34}\times 3\times 10^{8}(\frac{1}{651\times 10^{-9}} - \frac{2}{3\times 521^{-9}})[/tex]

[tex]\phi = 1.532\times 10^{-19} J[/tex]

[tex]\phi = \frac{1.532\times 10^{-19}}{1.6\times 10^{-19}}[/tex]

[tex]\phi = 0.958 eV[/tex]

Answer:

Work function of the material:

[tex]\phi = 1.532\times 10^{-19} J[/tex]  or 0.958 eV  

ACCESS MORE