Answer:
None, because [tex]11\neq 9.5\neq 8.[/tex]
Step-by-step explanation:
I. When [tex]f(x)=3x+2,[/tex] then
[tex]f(3)=3\cdot 3+2=9+2=11.[/tex]
II. Find the inverse function [tex]f^{-1}(x)[/tex] for the function [tex]f(x)=\dfrac{2x-7}{3}.[/tex]
[tex]y=\dfrac{2x-7}{3},\\ \\3y=2x-7,\\ \\2x=3y+7,\\ \\x=\dfrac{3y+7}{2},\\ \\f^{-1}(x)=\dfrac{3x+7}{2}.[/tex]
Thus,
[tex]f^{-1}(4)=\dfrac{3\cdot 4+7}{2}=\dfrac{12+7}{2}=\dfrac{19}{2}=9.5.[/tex]
III. Solve the equation [tex]2y+14=4y-2:[/tex]
[tex]14+2=4y-2y,\\ \\16=2y,\\ \\y=16:2=8.[/tex]