Respuesta :
By the chain rule,
[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm dy}{\mathrm dt}\dfrac{\mathrm dt}{\mathrm dx}\implies\dfrac{\mathrm dy}{\mathrm dt}=x\dfrac{\mathrm dy}{\mathrm dx}[/tex]
which follows from [tex]x=e^t\implies t=\ln x\implies\dfrac{\mathrm dt}{\mathrm dx}=\dfrac1x[/tex].
[tex]\dfrac{\mathrm dy}{\mathrm dt}[/tex] is then a function of [tex]x[/tex]; denote this function by [tex]f(x)[/tex]. Then by the product rule,
[tex]\dfrac{\mathrm d^2y}{\mathrm dx^2}=\dfrac{\mathrm d}{\mathrm dx}\left[\dfrac1x\dfrac{\mathrm dy}{\mathrm dt}\right]=-\dfrac1{x^2}\dfrac{\mathrm dy}{\mathrm dt}+\dfrac1x\dfrac{\mathrm df}{\mathrm dx}[/tex]
and by the chain rule,
[tex]\dfrac{\mathrm df}{\mathrm dx}=\dfrac{\mathrm df}{\mathrm dt}\dfrac{\mathrm dt}{\mathrm dx}=\dfrac1x\dfrac{\mathrm d^2y}{\mathrm dt^2}[/tex]
so that
[tex]\dfrac{\mathrm d^2y}{\mathrm dt^2}-\dfrac{\mathrm dy}{\mathrm dt}=x^2\dfrac{\mathrm d^2y}{\mathrm dx^2}[/tex]
Then the ODE in terms of [tex]t[/tex] is
[tex]\dfrac{\mathrm d^2y}{\mathrm dt^2}+8\dfrac{\mathrm dy}{\mathrm dt}-20y=0[/tex]
The characteristic equation
[tex]r^2+8r-20=(r+10)(r-2)=0[/tex]
has two roots at [tex]r=-10[/tex] and [tex]r=2[/tex], so the characteristic solution is
[tex]y_c(t)=C_1e^{-10t}+C_2e^{2t}[/tex]
Solving in terms of [tex]x[/tex] gives
[tex]y_c(x)=C_1e^{-10\ln x}+C_2e^{2\ln x}\implies\boxed{y_c(x)=C_1x^{-10}+C_2x^2}[/tex]
