Answer:[tex]\frac{22}{3}[/tex],[tex]2\dot \sqrt{\frac{11}{3}}[/tex]
Step-by-step explanation:
Given
rectangle with its base on x-axis
and other two corners at parabola
and parabola is downward facing symmetric about y-axis
let y be the y co-ordinate of the corner thus x co-ordinate is given by
[tex]x=\pm \sqrt{11-y}[/tex]
Thus lengths of rectangle is [tex]2\sqrt{11-y}[/tex] & y
Area [tex]=y\times 2\sqrt{11-y}[/tex]
differentiating w.r.t to y for maximum area
[tex]\frac{\mathrm{d} A}{\mathrm{d} y}=2\times \sqrt{11-y}-\frac{y}{2\dot \sqrt{11-y}}=0[/tex]
we get y=[tex]\frac{22}{3}[/tex]
and [tex]x=\pm \sqrt{\frac{11}{3}}[/tex]
A_{max}=16.21 units