How many critical values does the function f(x) = 3x^4 + 4x^3 have? none one two three four The function y = x^3 + 15 x^2 - 33 x has a relative maximum when x = -11. 11. 0. -1. 1. The function f(x) = 4x^3 - 10x^2 - 8x + 3 is decreasing on (-infinity, 2). (-1/3, infinity). (-1/3, 2). (2, infinity). (-infinity, 1/3).

Respuesta :

Answer:Given below

Step-by-step explanation:

Given

[tex]F\left ( x\right )=3x^4+4x^3[/tex]

To find critical values [tex]F'\left ( x\right )=0[/tex]

[tex]4\cdot 3x^3+3\cdot 4x^2=0[/tex]

[tex]12x^2\left ( x+1\right )=0[/tex]

therefore x=-1,0 are two critical points

[tex]\left ( b\right )[/tex]

[tex]F\left ( x\right )=x^3+15x^2-33x[/tex]

To find maxima/minima [tex]F'\left ( x\right )=0[/tex]

[tex]3x^2+30x-33=0[/tex]

[tex]x^2+10x-11=0[/tex]

[tex]\left ( x-1\right )\left ( x+11\right )=0[/tex]

x=1,-11

For maxima [tex]F''\left ( x\right )<0[/tex]

for x=-11, [tex]F''\left ( x\right )<0[/tex]

[tex]\left ( c\right )[/tex]

[tex]F\left ( x\right )=4x^3-10x^2-8x+3[/tex]

For decreasing curve [tex]F'\left ( x\right )<0[/tex]

[tex]12x^2-20x-8<0[/tex]

[tex]3x^2-5x-2<0[/tex]

[tex]\left ( 3x+1\right )\left ( x-2\right )<0[/tex]

therefore x is decreasing in interval [tex]\left ( -\frac{1}{3}\right,2 )[/tex]