Answer:Given below
Step-by-step explanation:
Given
[tex]F\left ( x\right )=3x^4+4x^3[/tex]
To find critical values [tex]F'\left ( x\right )=0[/tex]
[tex]4\cdot 3x^3+3\cdot 4x^2=0[/tex]
[tex]12x^2\left ( x+1\right )=0[/tex]
therefore x=-1,0 are two critical points
[tex]\left ( b\right )[/tex]
[tex]F\left ( x\right )=x^3+15x^2-33x[/tex]
To find maxima/minima [tex]F'\left ( x\right )=0[/tex]
[tex]3x^2+30x-33=0[/tex]
[tex]x^2+10x-11=0[/tex]
[tex]\left ( x-1\right )\left ( x+11\right )=0[/tex]
x=1,-11
For maxima [tex]F''\left ( x\right )<0[/tex]
for x=-11, [tex]F''\left ( x\right )<0[/tex]
[tex]\left ( c\right )[/tex]
[tex]F\left ( x\right )=4x^3-10x^2-8x+3[/tex]
For decreasing curve [tex]F'\left ( x\right )<0[/tex]
[tex]12x^2-20x-8<0[/tex]
[tex]3x^2-5x-2<0[/tex]
[tex]\left ( 3x+1\right )\left ( x-2\right )<0[/tex]
therefore x is decreasing in interval [tex]\left ( -\frac{1}{3}\right,2 )[/tex]