Respuesta :
Answer: Current stock price ([tex]P_{0}[/tex]) = $ 51.71
Explanation:
First we'll calculate the dividends for the next 5 years and the respective Terminal value in [tex]5^{th}[/tex] year .
i.e. ,
[tex]D_{0}[/tex] = $ 2.30
[tex]D_{1}[/tex] = [tex]D_{0}[/tex] [tex]\times[/tex] (1 + [tex]Growth rate_{year 1}[/tex])
[tex]D_{1}[/tex] = $ 2.30 × ( 1 + 0%) = $ 2.30
[tex]D_{2}[/tex] = [tex]D_{1}[/tex] [tex]\times[/tex] (1 + [tex]Growth rate_{year 2}[/tex])
[tex]D_{2}[/tex] = $ 2.30 × ( 1 + 3%) = $ 2.36
[tex]D_{3}[/tex] = [tex]D_{2}[/tex] [tex]\times[/tex] (1 + [tex]Growth rate_{year 3}[/tex])
[tex]D_{3}[/tex] = $ 2.36 × ( 1 + 3%) = $ 2.43
[tex]D_{4}[/tex] = [tex]D_{3}[/tex] [tex]\times[/tex] (1 + [tex]Growth rate_{year 4}[/tex])
[tex]D_{4}[/tex] = $ 2.43 × ( 1 + 16%) = $ 2.819
[tex]D_{5}[/tex] = [tex]D_{4}[/tex] [tex]\times[/tex] (1 + [tex]Growth rate_{year 5}[/tex])
[tex]D_{5}[/tex] = $ 2.819 × ( 1 + 11%) = $ 3.129
∵ The growth rate after [tex]5^{th}[/tex] year = 11%
Required rate of return (r) = 15%
∴ Terminal value ([tex]P_{5}[/tex]) = [tex]\frac{D_{5} \times (1 + Growth rate)}{Required rate of return - Growth rate}[/tex]
Terminal value ([tex]P_{5}[/tex]) = [tex]\frac{ 3.129 \times (1 + 0.11)}{0.15 - 0.11}[/tex]
Terminal value ([tex]P_{5}[/tex]) = $ 86.85
Now, we'll compute the price per share :
Current stock price ([tex]P_{0}[/tex]) = [tex]\left [ \frac{D_{1}}{(1 + r)^{n}} + \frac{D_{2}}{(1 + r)^{n}} +\frac{D_{3}}{(1 + r)^{n}} + \frac{D_{4}}{(1 + r)^{n}} + \frac{D_{5}}{(1 + r)^{n}} + \frac{P_{5}}{(1 + r)^{n}}\right ][/tex]
where;
n = respective years
r = required rate of return
∴ Current stock price ([tex]P_{0}[/tex]) = [tex]\left [ \frac{2.30}{(1 + 0.15)^{1}} + \frac{2.36}{(1 + 0.15)^{2}} +\frac{2.43}{(1 + 0.15)^{3}} + \frac{2.819}{(1 + 0.15)^{4}} + \frac{3.129}{(1 + 0.15)^{5}} + \frac{86.85}{(1 + 0.15)^{5}}\right ][/tex]
Current stock price ([tex]P_{0}[/tex]) = ( 2 + 1.78 + 1.59 + 1.611 + 1.55 + 43.18)
Current stock price ([tex]P_{0}[/tex]) = $ 51.71