Respuesta :

Answer:

so b=-9 while c=12.

Step-by-step explanation:

If you have x-intercepts 1 and -4, then that means f(1)=0 and f(-4)=0.

You are given [tex]f(x)=-3x^2+bx+c[/tex]

So you have the system of equations to solve:

[tex]f(1)=-3(1)^2+b(1)+c=0[/tex]

[tex]f(-4)=-3(-4)^2+b(-4)+c=0[/tex]

Evaluating the exponents:

[tex]-3(1)+b+c=0[/tex]

[tex]-3(16)-4b+c=0[/tex]

Doing a little bit of multiplying:

[tex]-3+b+c=0[/tex]

[tex]-48-4b+c=0[/tex]

Let's add 3 on both sides of equation 1 and 48 on both sides of equation 2:

[tex]b+c=3[/tex]

[tex]-4b+c=48[/tex]

Subtracting the equations will eliminate c.

Let's do that:

[tex]5b+0c=-45[/tex]

[tex]5b=-45[/tex]

Divide both sides by 5:

[tex]b=\frac{-45}{5}[/tex]

Simplify:

[tex]b=-9[/tex]

If b=-9 and b+c=3 then -9+c=3 implies c=9+3=12.

so b=-9 while c=12.

ACCESS MORE