Respuesta :
Answer:
Answer is contained in the explanation
Step-by-step explanation:
[tex]g(x)=5-x\\g'(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\\g'(x)=\lim_{h \rightarrow 0} \frac{[5-(x+h)]-[5-x]}{h}\\g'(x)=\lim_{h \rightarrow 0} \frac{5-x-h-5+x}{h}\\g'(x)=\lim_{h \rightarrow 0} \frac{-h}{h}\\g'(x)=\lim_{h \rightarrow 0} -1\\g'(x)=-1[/tex]
g(x)=5-x has domain all real numbers (you can plug an a number and always get a number back)
So in interval notation this is [tex](-\infty, \infty)[/tex]
g'(x)=-1 has domain all real numbers (the original function had domain issues... and no matter the number you plug in you do get a number, that number being -1)
So in interval notation this is [tex](-\infty, \infty)[/tex]
The derivative of given function g(x) is
g'(x)=-1
Domain of function g(x) is (-∞,∞)
Domain of derivative is (-∞,∞)
Given :
[tex]g(x) = 5 - x[/tex]
Lets find derivative using definition of derivative
[tex]\lim_{h \to 0} \frac{g(x+h)-g(x)}{h} \\g(x)=5-x\\g(x+h)=5-(x+h)\\g(x+h)=5-x-h\\\lim_{h \to 0} \frac{5-x-h-(5-x)}{h} \\\\\lim_{h \to 0} \frac{5-x-h-5+x}{h} \\\\\lim_{h \to 0} \frac{-h}{h} \\\\-1[/tex]
Derivative g'(x)=-1
g(x) is a linear function . for all linear function the domain is set of all real numbers
Domain of function g(x) is (-∞,∞)
Derivative function g'(x) =-1. For all values of x the value of y is -1
So domain is set of all real numbers
Domain of derivative is (-∞,∞)
Learn more : brainly.com/question/13607282