Find the derivative of the function using the definition of derivative. g(x) = 5 − x (1) Find g'(x) (2) State the domain of the function. (Enter your answer using interval notation.) (3) State the domain of its derivative. (Enter your answer using interval notation.)

Respuesta :

Answer:

Answer is contained in the explanation

Step-by-step explanation:

[tex]g(x)=5-x\\g'(x)=\lim_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\\g'(x)=\lim_{h \rightarrow 0} \frac{[5-(x+h)]-[5-x]}{h}\\g'(x)=\lim_{h \rightarrow 0} \frac{5-x-h-5+x}{h}\\g'(x)=\lim_{h \rightarrow 0} \frac{-h}{h}\\g'(x)=\lim_{h \rightarrow 0} -1\\g'(x)=-1[/tex]

g(x)=5-x has domain all real numbers (you can plug an a number and always get a number back)

So in interval notation this is [tex](-\infty, \infty)[/tex]

g'(x)=-1 has domain all real numbers (the original function had domain issues... and no matter the number you plug in you do get a number, that number being -1)

So in interval notation this is [tex](-\infty, \infty)[/tex]

The derivative of given function g(x) is

g'(x)=-1

Domain of function g(x) is (-∞,∞)

Domain of derivative is  (-∞,∞)

Given :

[tex]g(x) = 5 - x[/tex]

Lets find derivative using definition of derivative

[tex]\lim_{h \to 0} \frac{g(x+h)-g(x)}{h} \\g(x)=5-x\\g(x+h)=5-(x+h)\\g(x+h)=5-x-h\\\lim_{h \to 0} \frac{5-x-h-(5-x)}{h} \\\\\lim_{h \to 0} \frac{5-x-h-5+x}{h} \\\\\lim_{h \to 0} \frac{-h}{h} \\\\-1[/tex]

Derivative g'(x)=-1

g(x) is a linear function . for all linear function the domain is set of all real numbers

Domain of function g(x) is (-∞,∞)

Derivative function g'(x) =-1. For all values of x  the value of y is -1

So domain is set of all real numbers

Domain of derivative is  (-∞,∞)

Learn more : brainly.com/question/13607282

ACCESS MORE
EDU ACCESS
Universidad de Mexico