so, we have a angle U=90 degrees it means , that this is a rigth triangle, we can use the Pithagoras theorem
is says
[tex]a^2+b^2=c^2[/tex]where, a and b are the legs of the triangle and c is the hypotenuse.
Also
TS=41
UT=40
SU=9
so, the longest side is the hypotenuse=TS=41
hypotenuse=41
Leg1=40
Leg2=9
[tex]\begin{gathered} 9^2+40^2=41^2 \\ 81+1600=1681 \\ 1681=1681 \end{gathered}[/tex]then, it is a rigth triangle, we can use trigonometric relations to find tan S
[tex]\begin{gathered} \sin \emptyset=\frac{opposite\text{ side}}{\text{hypotenuse}} \\ \text{and } \\ \cos \emptyset\text{ =}\frac{adjacent\text{ side}}{\text{hypotenuse}} \\ \text{tan}\emptyset\text{ =}\frac{\sin \emptyset}{\cos \emptyset} \\ \text{tan}\emptyset=\frac{\frac{\text{opposite side}}{\text{hypotenuse}}}{\frac{\text{adjacent side}}{\text{hypotenuse}}} \\ \text{tan}\emptyset\text{ =}\frac{\text{opposite side}}{\text{adjacent side}} \end{gathered}[/tex]Now, we have to identify opposite side and adjacen side.
for the angle S, the opposite side is TU=40
and the adjacen side is SU=9
replace the values
[tex]\begin{gathered} \tan S=\frac{40}{9} \\ \tan S=4.44 \end{gathered}[/tex]to the nearest hundredth
Tan S=4.44