Respuesta :
Answer:
[tex]\frac{1}{3a}[/tex]
Step-by-step explanation:
Given
[tex]\frac{a-3}{15a}[/tex] × [tex]\frac{5}{a-3}[/tex]
Cancel the factor (a - 3) on the numerator and denominator
Cancel the 5 and 15 by dividing both by 5, leaving
[tex]\frac{1}{3a}[/tex]
Answer: The required answer is [tex]\dfrac{1}{3a},~a\neq 3.[/tex]
Step-by-step explanation: We are given to find the following product :
[tex]P=\dfrac{a-3}{15a}\times\dfrac{5}{a-3}~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
Since (a - 3) is present in both numerator and denominator, so we can divide them if
[tex]a-3\neq 0\\\\\Rightarrow a\neq 3.[/tex]
Then, we get from (i) that
[tex]P\\\\\\=\dfrac{(a-3)}{15a}\times\dfrac{5}{(a-3)}\\\\\\=\dfrac{5}{15a}\\\\\\=\dfrac{1}{3a}.[/tex]
Thus, the required answer is [tex]\dfrac{1}{3a},~a\neq 3[/tex]