Respuesta :

Answer:

[tex]\frac{1}{3a}[/tex]

Step-by-step explanation:

Given

[tex]\frac{a-3}{15a}[/tex] × [tex]\frac{5}{a-3}[/tex]

Cancel the factor (a - 3) on the numerator and denominator

Cancel the 5 and 15 by dividing both by 5, leaving

[tex]\frac{1}{3a}[/tex]

Answer:  The required answer is [tex]\dfrac{1}{3a},~a\neq 3.[/tex]

Step-by-step explanation:  We are given to find the following product :

[tex]P=\dfrac{a-3}{15a}\times\dfrac{5}{a-3}~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]

Since (a - 3) is present in both numerator and denominator, so we can divide them if

[tex]a-3\neq 0\\\\\Rightarrow a\neq 3.[/tex]

Then, we get from (i) that

[tex]P\\\\\\=\dfrac{(a-3)}{15a}\times\dfrac{5}{(a-3)}\\\\\\=\dfrac{5}{15a}\\\\\\=\dfrac{1}{3a}.[/tex]

Thus, the required answer is [tex]\dfrac{1}{3a},~a\neq 3[/tex]