Given that
[tex]f(x)=log_5(x+1)[/tex]To solve the question, we will have to first find the inverse of the function
[tex]f(x)=\text{ y = }log_5(x+1)[/tex][tex]5^y\text{ =x + 1}[/tex]Make x the subject of the formula
[tex]x=5^y\text{ - 1}[/tex]The inverse of the function is:
[tex]f^{-1}(x)=5^x\text{ - 1}[/tex]Substituting x = 2
[tex]\begin{gathered} f^{-1}(2)=5^2\text{ - 1} \\ f^{-1}(2)=25\text{ - 1} \\ \\ f^{-1}(2)=24 \end{gathered}[/tex]Answer = 24
Option D is correct