Respuesta :
Answer:
Length of side [tex]c[/tex]:
[tex]c = \rm AB \approx 115\; yds[/tex].
The distance across the canyon is approximately
[tex]\rm 113\;yds[/tex].
Step-by-step explanation:
- [tex]c[/tex] is the length of the side opposite to the angle [tex]\rm A\hat{C} B[/tex].
- [tex]a[/tex] is the length of the side opposite to the angle [tex]\rm B\hat{A}C[/tex].
Apply the law of sine:
[tex]\displaystyle \frac{c}{\sin{\rm A\hat{C}B} = \frac{a}{\sin{\rm B\hat{A}C}}[/tex].
In other words,
[tex]\displaystyle c = \sin{\rm B\hat{A}C} \cdot \frac{a}{\sin{\rm A\hat{C} B}}[/tex].
However, the value of the angle [tex]\rm B\hat{A}C[/tex] isn't given. Don't panic. The three interior angles of a triangle shall add up to 180°. Two of the three angles are given. The value of the third angle is implied.
[tex]\rm B\hat{A}C = 180\textdegree{} - A\hat{C}B - A\hat{B}C = 30\textdegree{}[/tex].
Apply the law of sine to find [tex]c[/tex]:
[tex]\displaystyle \begin{aligned}c &= \sin{\rm A\hat{C}B} \cdot \frac{a}{\sin{\rm B\hat{A}C}}\\ &= \sin{50\textdegree{}}\cdot \frac{\rm 75\; yds}{\sin{30\textdegree{}}}\\ &\rm = 114.907\; yds\end{aligned}[/tex].
Refer to the diagram. The distance across the canyon will be
[tex]\rm AB \cdot \sin{A\hat{B}C} = 114.907\times \sin{100\textdegree{}} \approx 113\;yds[/tex].
![Ver imagen jacob193](https://us-static.z-dn.net/files/dce/3f7c52b1a97daef98b28aaa902374289.png)