Respuesta :
Answer:
Part 1) The volume of pyramid A is two times the volume of pyramid B
Part 2) The new volume of pyramid B is equal to the volume of pyramid A
Step-by-step explanation:
we know that
The volume of a pyramid is equal to
[tex]V=\frac{1}{3}Bh[/tex]
where
B is the area of the base of pyramid
h is the height of the pyramid
Part 1
The heights of the pyramids are the same
Find the volume of pyramid A
Find the area of the base B
[tex]B=10*20=200\ m^{2}[/tex]
substitute
[tex]VA=\frac{1}{3}(200)h[/tex]
[tex]VA=\frac{200}{3}h\ m^{3}[/tex]
Find the volume of pyramid B
Find the area of the base B
[tex]B=10^{2}=100\ m^{2}[/tex]
substitute
[tex]VB=\frac{1}{3}(100)h[/tex]
[tex]VB=\frac{100}{3}h\ m^{3}[/tex]
Compare the volumes
[tex]VA=2VB[/tex]
The volume of pyramid A is two times the volume of pyramid B
Part 2)
If the height of pyramid B increases to twice that of pyramid A
we have that
[tex]VA=\frac{200}{3}h\ m^{3}[/tex]
Find the new volume of pyramid B
we have
[tex]B=100\ m^{2}[/tex]
[tex]h=2h\ m[/tex]
substitute
[tex]VB=\frac{1}{3}(100)(2h)[/tex]
[tex]VB=\frac{200}{3}h\ m^{3}[/tex]
Compare the volumes
[tex]VA=VB[/tex]
The new volume of pyramid B is equal to the volume of pyramid A
Answer:
The volume of pyramid A is twice the volume of pyramid B. If the height of pyramid B increases to twice that of pyramid A, the new volume of pyramid B is equal to the volume of pyramid A.
Step-by-step explanation:
Correct for plato :)