Answer: 0.42
Step-by-step explanation:
Given: Mean : [tex]\mu=954\text{ dollars}[/tex]
Standard deviation : [tex]234\text{ dollars}[/tex]
Sample size : [tex]n=61[/tex]
The formula to calculate z score is given by :-
[tex]z=\dfrac{X-\mu}{\dfrac{\sigma}{\sqrt{n}}}[/tex]
For X=960
[tex]z=\dfrac{960 -954}{\dfrac{234}{\sqrt{61}}}=0.200262812203\approx0.2[/tex]
The p-value =[tex]P(X\geq960)=1-P(X<960)=1-P(z<0.2)=1-0.5792597=0.4207403\approx0.42[/tex]
Hence, the probability that a single randomly selected value is at least 960 dollars = 0.42