Answer:
[tex]2.1\cdot 10^{-3} C[/tex]
Explanation:
The initial charge stored on the capacitor is given by
[tex]Q_0 =C_0 V[/tex]
where
[tex]C_0 = 6.0 \mu F = 6.0 \cdot 10^{-6}F[/tex] is the initial capacitance
V = 100 V is the potential difference across the capacitor
Solving the equation,
[tex]Q_0 = (6.0 \cdot 10^{-6}F)(100 V)=6.0 \cdot 10^{-4}C[/tex]
The charge stored in the capacitor when inserting the dielectric is
[tex]Q = k Q_0[/tex]
where
k = 4.5 is the dielectric constant
Substituting,
[tex]Q=(4.5)(6.0 \cdot 10^{-4}C)=2.7\cdot 10^{-3}C[/tex]
So the additional charge is
[tex]\Delta Q=Q-Q_0 = 2.7 \cdot 10^{-3}C - 6.0 \cdot 10^{-4}C=2.1\cdot 10^{-3} C[/tex]