Respuesta :

Answer:

Correct me if I am wrong, but I believe it is B.

Step-by-step explanation:

Answer:

C. 28

Step-by-step explanation:

From the diagram diagram; [tex]\angle BAC=(x+6)\degree[/tex] and [tex]\angle ABD=2x\degree[/tex].

  • The opposite sides of a rhombus are parallel.
  • The diagonals act as transversals.
  • Therefore the co-interior angles will add up to 180 degrees.

The pair of co-interior angles are [tex]\angle BAD[/tex] and [tex]\angle ABC[/tex].

Also the diagonals of a rhombus bisect corner angles.

This implies that:

[tex]\angle BAD=2(\angle BAC)\implies \angle BAD=2(x+6)\degree[/tex].

[tex]\angle ABC=2(\angle ABD)\implies \angle ABC=2(2x)\degree[/tex].

The co-interior angles are supplementary  so we form the equation:

[tex]\angle BAD+\angle ABC=180\degree[/tex]

[tex]\implies 2(x+6)\degree+2(2x)\degree=180\degree[/tex]

Expand the parenthesis to get:

[tex]\implies 2x+12+4x=180\degree[/tex]

Group the similar terms:

[tex]\implies 2x+4x=180-12[/tex]

Simplify

[tex]\implies 6x=168[/tex]

Divide both sides by 6.

[tex]\implies \frac{6x}{6}=\frac{168}{6}[/tex]

[tex]\therefore x=28[/tex]

The correct answer is C.

ACCESS MORE