there are two cubes. the smaller cube has a surface area of 24 square units. the larger cube has a surface area that is twice that of the smaller cube. what is the volume, in cubic units, of the larger cube?​

Respuesta :

24 times 2 which will be 48

The Volume of larger cube is: 16 √2 cubic units.

What is Surface Area of cube?

Surface area is the sum of the areas of all faces (or surfaces) on a 3D shape.

Surface Area of smaller cube is: 24 square units

Surface area of larger cube = 2(SA of smaller cube)

                                               = 48 square units

So, Surface area of larger cube = [tex]6a^{2}[/tex]

                                        48        = 6* [tex]a^{2}[/tex]

                                         8= [tex]a^{2}[/tex]

                                        a= [tex]2\sqrt{2}[/tex] unit

Volume of larger cube= [tex]a^{3}[/tex]

                                     =[tex](2\sqrt{2})^{3}[/tex]

                                    = 16 √2 cubic units.

Thus, the volume of larger cube is: 16 √2 cubic units.

Learn more about surface area of cube here:

https://brainly.com/question/13789496

#SPJ2

ACCESS MORE