Respuesta :

For this case we have the following functions:

[tex]g (x) = 9 + 4x\\h (x) = \frac {x + 21} {5}[/tex]

We must find [tex](h * g) (x)[/tex]. By definition of composite functions we have to:

[tex](h * g) (x) = h (x) * g (x)[/tex]

So:

[tex](h * g) (x) = 9 + 4x * \frac {x + 21} {5}[/tex]

We apply distributive property:

[tex](h * g) (x) = \frac {9x + 9 * 21 + 4x ^ 2 + 4x * 21} {5}\\(h * g) (x) = \frac {9x + 189 + 4x ^ 2 + 84x} {5}\\(h * g) (x) = \frac {4x ^ 2 + 93x + 189} {5}\\[/tex]

Answer:

[tex](h * g) (x) = \frac {4x ^ 2 + 93x + 189} {5}[/tex]

RELAXING NOICE
Relax