Respuesta :
Answer:
a) 0.159
b) 0.84
Explanation:
The Horizontal component is 2.3 times the vertical component
Let the horizontal electric field component = [tex]E_{h}[/tex]
Let the vertical electric field component = [tex]E_{v}[/tex]
The formula for light intensity is given by:
[tex]I = \frac{E_{m} ^{2} }{2c \mu}[/tex]..............................(1)
[tex]E_{m}[/tex] is the resolution of the vertical and horizontal components, [tex]E_{h} and E_{v}[/tex]
[tex]E_{m} ^{2} = E_{h} ^{2} + E_{v} ^{2}[/tex]..................(2)
Light intensity before the glasses were put on:
[tex]I_{1} = \frac{E_{m} ^{2} }{2c \mu_{1} }[/tex].............................(3)
Put equation (2) into equation (3)
[tex]I_{1} = \frac{E_{h} ^{2} + E_{v} ^{2}}{2c \mu_{1} }[/tex].............................(4)
After the glasses were put on the horizontal component vanishes, i.e. [tex]E_{h} = 0[/tex]
[tex]I_{2} = \frac{ E_{v} ^{2}}{2c \mu_{2} }[/tex]...................................(5)
Divide equation (5) by equation (4)
[tex]\frac{I_{2} }{I_{1} } = \frac{E_{v} ^{2} }{E_{h} ^{2} + E_{v} ^{2}}[/tex]...............................(6)
But [tex]E_{h} = 2.3E_{v}[/tex]......................(7)
Insert equation (7) into (6)
[tex]\frac{I_{2} }{I_{1} } = \frac{E_{v}^{2} }{(2.3E_{v})^{2} + E_{v} ^{2} } \\\frac{I_{2} }{I_{1} } = \frac{E_{v}^{2} }{5.29E_{v}^{2} + E_{v} ^{2} }\\\frac{I_{2} }{I_{1} } = \frac{E_{v}^{2} }{6.29E_{v}^{2} }\\\frac{I_{2} }{I_{1} } =\frac{1}{6.29} \\[/tex]
[tex]\frac{I_{2} }{I_{1} }= 0.159[/tex]
b) When the sunbather lies on his side, the vertical component vanishes, i.e [tex]E_{v} = 0[/tex]
[tex]\frac{I_{2} }{I_{1} } = \frac{E_{h} ^{2} }{E_{h} ^{2} + E_{v} ^{2}}[/tex]
[tex]\frac{I_{2} }{I_{1} } = \frac{(2.3E_{v} )^{2} }{E_{v} ^{2} +(2.3E_{v} )^{2}}[/tex]
[tex]\frac{I_{2} }{I_{1} } = \frac{5.29E_{v}^{2} }{E_{v} ^{2} +5.29E_{v}^{2} }[/tex]
[tex]\frac{I_{2} }{I_{1} } = \frac{5.29E_{v}^{2} }{6.29E_{v}^{2} }\\\frac{I_{2} }{I_{1} } = \frac{5.29}{6.29} \\\frac{I_{2} }{I_{1} } = 0.84[/tex]