Respuesta :

Answer:

  cot(θ) = -12/35

Step-by-step explanation:

  cot(θ) = -1/√(sec(θ)^2 -1) . . . . negative in the second quadrant

  = -1/√((-37/12)^2 -1) = -1/(35/12)

  cot(θ) = -12/35

Answer:

[tex]-\frac{12}{35}[/tex]

Step-by-step explanation:

Given,

[tex]sec\theta = -\frac{37}{12}[/tex]

We know that,

[tex]sec \theta = \frac{H}{B}[/tex]

Where, H is the hypotenuse of a right triangle and B is its base,

By making diagram,

By applying pythagoras theorem,

The Perpendicular of the triangle,

[tex]P=\sqrt{H^2-B^2}=\sqrt{37^2-12^2}=\sqrt{1369-144}=\sqrt{1225}=35[/tex]

Hence, [tex]cot \theta = -\frac{B}{P}=-\frac{12}{35}[/tex]

( We took the negative sign because [tex]\frac{\pi}{2}< \theta < \pi[/tex] )

Ver imagen slicergiza
ACCESS MORE