Respuesta :
Answer:
cot(θ) = -12/35
Step-by-step explanation:
cot(θ) = -1/√(sec(θ)^2 -1) . . . . negative in the second quadrant
= -1/√((-37/12)^2 -1) = -1/(35/12)
cot(θ) = -12/35
Answer:
[tex]-\frac{12}{35}[/tex]
Step-by-step explanation:
Given,
[tex]sec\theta = -\frac{37}{12}[/tex]
We know that,
[tex]sec \theta = \frac{H}{B}[/tex]
Where, H is the hypotenuse of a right triangle and B is its base,
By making diagram,
By applying pythagoras theorem,
The Perpendicular of the triangle,
[tex]P=\sqrt{H^2-B^2}=\sqrt{37^2-12^2}=\sqrt{1369-144}=\sqrt{1225}=35[/tex]
Hence, [tex]cot \theta = -\frac{B}{P}=-\frac{12}{35}[/tex]
( We took the negative sign because [tex]\frac{\pi}{2}< \theta < \pi[/tex] )
![Ver imagen slicergiza](https://us-static.z-dn.net/files/d6b/e796e2610d30fba6216ed888e09cf510.jpg)