Respuesta :

Answer:

sinA = [tex]\frac{a}{c}[/tex]

Step-by-step explanation:

sinA = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{BC}{AB}[/tex] = [tex]\frac{a}{c}[/tex]

For this case, we have that by definition:

[tex]Sine (x) = \frac {Cathet \ opposite \ to \ angle \ x} {Hypotenuse}[/tex]

In this case we are asked to find the expression as a function of angle A.

Observing the figure we have:

[tex]Sine (A) = \frac {a} {c}[/tex]

In an equivalent way we have:

[tex]Sine (A) = \frac {BC} {BA}[/tex]

ANswer:

[tex]Sine (A) = \frac {a} {c}\\Sine (A) = \frac {BC} {BA}[/tex]

ACCESS MORE