Respuesta :

Answer:

Point (1,8)  

Step-by-step explanation:

We will use segment formula to find the coordinates of point that will partition our line segment PQ in a ratio 3:1.

When a point divides any segment internally in the ratio m:n, the formula is:

[tex][x=\frac{mx_2+nx_1}{m+n},y= \frac{my_2+ny_1}{m+n}][/tex]

Let us substitute coordinates of point P and Q as:

[tex]x_1=-8[/tex],

[tex]y_1=-4[/tex]

[tex]x_2=4[/tex]

[tex]y_2=12[/tex]

[tex]m=3[/tex]

[tex]n=1[/tex]

[tex][x=\frac{(3*4)+(1*-8)}{3+1},y=\frac{(3*12)+(1*-4)}{3+1}][/tex]

[tex][x=\frac{12-8}{4},y=\frac{36-4}{4}][/tex]

[tex][x=\frac{4}{4},y=\frac{32}{4}][/tex]

[tex][x=1,y=8][/tex]

Therefore, point (1,8) will partition the directed line segment PQ in a ratio 3:1.

   

Answer:

Step-by-step explanation:

1,8

ACCESS MORE