Respuesta :

Given the equation:

[tex]f(x)=6x^{2}+12x-7[/tex]

The question is: What are the zeros of this quadratic function? this happens when f(x) = 0, so:

[tex]f(x)=6x^{2}+12x-7=0[/tex]

a = 6
b = 12
c = -7

Then the zeros are given through equation:

[tex]x_{12}= \frac{-b\pm \sqrt{b^{2}-4ac}}{2a}= \frac{-12\pm \sqrt{12^{2}-4(6)(-7)}}{2(6)}[/tex]

∴ [tex]x_{1}=0.47[/tex]
[tex]x_{2}=-2.47[/tex]

Solution:

Thus, the zeros are x=0.47,-2.47

Explanation:

We have been given the function

[tex]f(x)=6x^2+12x-7[/tex]

In order to find the zeros of this function, we will solve the quadratic equation [tex]f(x)=6x^2+12x-7=0[/tex]

We'll solve this by quadratic formula which is given by

[tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

We have

[tex]a=6,\:b=12,\:c=-7:[/tex]

On substituting these values, we get

[tex]x_{1,\:2}=\frac{-12\pm \sqrt{12^2-4\cdot \:6\left(-7\right)}}{2\cdot \:6}\\\\x_{1,\:2}=\frac{-12\pm \sqrt{312}}{2\cdot \:6}\\x_{1,\:2}=\frac{-12\pm 2\sqrt{78}}{12}\\\\\mathrm{The\:final\:solutions\:to\:the\:quadratic\:equation\:are:}\\\\x=\frac{\sqrt{78}-6}{6},\:x=-\frac{6+\sqrt{78}}{6}\\\text{In decimal, we have}\\x=0.47,-2.47[/tex]

Thus, the zeros are x=0.47,-2.47


ACCESS MORE