Respuesta :
Answer:
∠MSR is right angle
Step-by-step explanation:
It is given that RHOM is a Rhombus
Also ΔHOM, ΔMHR, ΔRHO and ΔOMR are isosceles triangles
Let us take ΔMSR and ΔRSH
∠MRS =∠HRS ( since it is given that the diagonal RO bisects ∠R)
∠RMS =∠RHS ( since Δ MRH is isosceles triangle )
RS = RS ( common side )
By AAS congruency rule ΔMSR ≅ ΔHSR
so we have
∠MSR=∠RSH ( corresponding parts of congruent triangles are congruent)
also we have
∠MSR +∠RSH =180° ( supplementary angles)
∠MSR +∠MSR=180° ( since ∠MSR=∠RSH)
2∠MSR= 180°
∠MSR =90°
Hence ∠MSR is right angle
![Ver imagen ExieFansler](https://us-static.z-dn.net/files/de0/fb8ee4b040aeb06e11c2bb28e42ad67a.png)
Answer:
It must be a right angle.
Step-by-step explanation:
The figure attached shows the rhombus RHOM with RO and HM as diagonals and are the angle bisectors of the vertex angles.
Let S be the point where the diagonals RO and HM intersects each other.
ΔHOM, ΔMHR, ΔRHO, ΔOMR are four isosceles triangles in the given rhombus.
Since, Diagonals of a rhombus bisect each other at right angle.
Therefore, we have ∠MSR= 90°
That is, ∠MSR is a right angle.
![Ver imagen saltywhitehorse](https://us-static.z-dn.net/files/d89/6658c3227f2789a5397432f2bef76c56.png)