Respuesta :

Answer:

[tex]\frac{3}{2}[/tex]x + 2y - 3.5

Step-by-step explanation:

Because the only operation to be used is addition, the parentheses can be taken away:

([tex]\frac{7}{4}[/tex]x - 5) + (2y - 3.5) + (-[tex]\frac{1}{4}[/tex]x + 5)

[tex]\frac{7}{4}[/tex]x - 5 + 2y - 3.5 + -[tex]\frac{1}{4}[/tex]x + 5

Addition of negative numbers is subtraction:

[tex]\frac{7}{4}[/tex]x - 5 + 2y - 3.5 + -[tex]\frac{1}{4}[/tex]x + 5

[tex]\frac{7}{4}[/tex]x - 5 + 2y - 3.5 - [tex]\frac{1}{4}[/tex]x + 5

Combine like terms to find the furthest simplification of the equation:

[tex]\frac{7}{4}[/tex]x - 5 + 2y - 3.5 - [tex]\frac{1}{4}[/tex]x + 5

[tex]\frac{6}{4}[/tex]x - 5 + 2y - 3.5 + 5

[tex]\frac{6}{4}[/tex]x + 2y - 3.5

Finally, simplify the coefficient of x:

[tex]\frac{6}{4}[/tex]x + 2y - 3.5

[tex]\frac{3}{2}[/tex]x + 2y - 3.5

([tex]\frac{7}{4}[/tex]x - 5) + (2y - 3.5) + (-[tex]\frac{1}{4}[/tex]x + 5) = [tex]\frac{3}{2}[/tex]x + 2y - 3.5

ACCESS MORE