contestada

Given the function h(x) =1/3 |x-6| +4, evaluate the function when x = - 3, - 2, and 0

H(-3) =
H(-2)=
H(0)=

Respuesta :

gmany

|x| = x for x ≥ 0

examples:

|3| = 3; |0.56| = 0.56; |102| = 102

|x| = -x for x < 0

examples:

|-3| = -(-3) = 3; |-0.56| = -(-0.56) = 0.56; |-102| = 102

--------------------------------------------------------------------------------

Use PEMDAS:

P Parentheses first

E Exponents (ie Powers and Square Roots, etc.)

MD Multiplication and Division (left-to-right)

AS Addition and Subtraction (left-to-right)

--------------------------------------------------------------------------------

[tex]h(x)=\dfrac{1}{3}|x-6|+4[/tex]

Put the values of x to the equation of the function h(x):

[tex]x=-3\to h(-3)=\dfrac{1}{3}|-3-6|+4=\dfrac{1}{3}|-9|+4=\dfrac{1}{3}(9)+4=3+4=7\\\\x=-2\to h(-2)=\dfrac{1}{3}|-2-6|+4=\dfrac{1}{3}|-8|+4=\dfrac{1}{3}(8)+4=\dfrac{8}{3}+\dfrac{12}{3}=\dfrac{20}{3}\\\\x=0\to h(0)=\dfrac{1}{3}|0-6|+4=\dfrac{1}{3}|-6|+4=\dfrac{1}{3}(6)+4=2+4=6[/tex]


ACCESS MORE