Answer:
[tex]-\frac{1}{2\pi}[/tex] cm³/min
Step-by-step explanation:
Let h = height of water and r = radius of its surface
[tex]V = \frac{ 1}{ 3}\pi r^{2}h[/tex]
At all times,
[tex]\frac{r }{h } = \frac{4 }{16 } = \frac{ 1}{4 }[/tex]
So, [tex]r = \frac{h }{4 }[/tex]
[tex]V = \frac{ 1}{ 3}\pi (\frac{h }{ 4})^{2}h[/tex]
[tex]V = \frac{ 1}{ 48}\pi h^{3}[/tex]
[tex]\frac{\text{d}V}{\text{d}h} = \frac{ 1}{ 16}\pi h^{2}[/tex]
We want [tex]\frac{\text{d}h}{\text{d}t}[/tex]
[tex]\frac{\text{d}V}{\text{d}t} = \frac{\text{d}V}{\text{d}h} \frac{\text{d}h}{\text{d}t}[/tex]
[tex]\frac{\text{d}V}{\text{d}t}[/tex] = -2 cm³/min
[tex]-2 = \frac{ 1}{ 16}\pi h^{2} \frac{\text{d}h}{\text{d}t}[/tex]
[tex]\frac{\text{d}h}{\text{d}t} = -\frac{2}{\frac{ 1}{ 16}\pi h^{2} }[/tex]
[tex]\frac{\text{d}h}{\text{d}t} = -\frac{32}{\pi h^{2}}[/tex]
When h = 8 cm
[tex]\frac{\text{d}h}{\text{d}t} = -\frac{32}{\pi\times8^{2}}[/tex]
[tex]\frac{\text{d}h}{\text{d}t} = -\frac{32}{64\pi}[/tex]
[tex]\frac{\text{d}h}{\text{d}t} = -\frac{1}{2\pi}[/tex] cm³/min
The depth of the water is decreasing at a rate of [tex]\frac{1}{2\pi}[/tex] cm³/min
.