Respuesta :

A they all equal to zero when simplified

Answer:

A solution is said to be extraneous, if it is a zero of the equation, but it does not satisfy the equation,when substituted in the original equation,L.H.S≠R.H.S. 

The given equation consisting of  variable , m is

   [tex]\frac{2 m}{2 m+3} -\frac{2 m}{2 m-3}=1\\\\ 2 m[\frac{1}{2 m+3} -\frac{1}{2 m-3}]=1\\\\ 2 m\times \frac{[2 m-3 -2 m- 3]}{4m^2-9}=1\\\\ -6 \times 2 m=4 m^2 -9\\\\ 4 m^2 +1 2 m -9=0\\\\m=\frac{-12 \pm\sqrt{12^2-4 \times 4 \times (-9)}}{2\times 4}\\\\m=\frac{-12 \pm \sqrt {144+144}}{8}\\\\m=\frac{-12 \pm \sqrt {288}}{8}\\\\m=\frac{-12 \pm 12 \sqrt{2}}{8}\\\\m=\frac{3}{2}\times(-1 \pm \sqrt{2})[/tex]

None of the two solution

[tex]m=\frac{3}{2}\times(-1 +\sqrt{2}) and , m=\frac{3}{2}\times(-1 -\sqrt{2})[/tex], is extraneous.

Here, L.H.S= R.H.S

Option A: 0→ extraneous