Respuesta :

When you multiply an exponent directly into another exponent, you multiply the exponents

(for a fraction, you multiply the exponent to both the numerator and denominator)

For example:

[tex](x^{2})^5=x^{2(5)}=x^{10}[/tex]

[tex](\frac{x^3}{y^2} )^5=\frac{x^{3(5)}}{y^{2(5)}} =\frac{x^{15}}{y^{10}}[/tex]



[tex](\frac{7}{4})^{11}=(\frac{7^1}{4^1})^{11}=\frac{7^{11}}{4^{11}}[/tex]

Your answer is A

Answer:

[tex](\frac{7^{11}}{4^{11}})[/tex]

Step-by-step explanation:

[tex](\frac{7}{4})^{11}[/tex]

To simplify this fractional exponent we apply exponential property

[tex](\frac{x}{y})^m=\frac{x^m}{y^m}[/tex]

As per this property , we multiply the exponent inside the fraction

Multiply the exponent 11 inside the fraction

Multiply the exponent 11 with 7 and then 4

[tex](\frac{7}{4})^{11}[/tex]

[tex](\frac{7^{11}}{4^{11}})[/tex]