Answer: The standard deviation of the sample is 1.58.
We calculate the standard deviation as follows:
Let time taken by employees be t
Let the Mean time (average) taken by employees be [tex]\overline{t}[/tex]
t t - [tex]\overline{t}[/tex] (t - [tex]\overline{t}[/tex] )²
8 [tex]8-8 = 0[/tex] [tex]0^{2} = 0[/tex]
7 [tex]7-8 = -1[/tex] [tex]-1^{2} = 1[/tex]
9 [tex]9-8 = 1[/tex] [tex]1^{2} = 1[/tex]
6 [tex]6-8 = -2[/tex] [tex]-2^{2} = 4[/tex]
10 [tex]10-8 = 2[/tex] [tex]2^{2} = 4[/tex]
Total 40 10
We find the mean or average as follows:
[tex]\overline{t} = \frac{\sum t}{N}[/tex]
[tex]\overline{t} = \frac{40}{5}[/tex]
[tex]\overline{t} = 8[/tex]
The formula for calculating the standard deviation of a sample is:
[tex]\sigma_{s} = \sqrt{\frac{\sum (t-\overline{t})^{2}}{N-1}}[/tex]
[tex]\sigma_{s} = \sqrt{\frac{10}{5-1}}[/tex]
[tex]\sigma_{s} = \sqrt{\frac{10}{4}}[/tex]
[tex]\sigma_{s} = 1.58113883[/tex]