In order to study the effectiveness of a training program, president kirkman randomly picks 5 employees and records the respective time taken in assembling part k. of the times are 8, 7, 9, 6, and 10 minutes, what is the standard deviation

Respuesta :

Answer: The standard deviation of the sample is 1.58.

We calculate the standard deviation as follows:

Let time taken by employees be t

Let the Mean time (average) taken by employees be [tex]\overline{t}[/tex]

               t                   t - [tex]\overline{t}[/tex]     (t - [tex]\overline{t}[/tex] )²

              8                     [tex]8-8 = 0[/tex]                   [tex]0^{2} = 0[/tex]

               7                     [tex]7-8 = -1[/tex]                  [tex]-1^{2} = 1[/tex]    

              9                      [tex]9-8 = 1[/tex]                   [tex]1^{2} = 1[/tex]

              6                     [tex]6-8 = -2[/tex]                 [tex]-2^{2} = 4[/tex]

             10                     [tex]10-8 = 2[/tex]                 [tex]2^{2} = 4[/tex]

Total     40                                                                              10      

We find the mean or average as follows:

[tex]\overline{t} = \frac{\sum t}{N}[/tex]

[tex]\overline{t} = \frac{40}{5}[/tex]

[tex]\overline{t} = 8[/tex]

The formula for calculating the standard deviation of a sample is:

[tex]\sigma_{s} = \sqrt{\frac{\sum (t-\overline{t})^{2}}{N-1}}[/tex]

[tex]\sigma_{s} = \sqrt{\frac{10}{5-1}}[/tex]

[tex]\sigma_{s} = \sqrt{\frac{10}{4}}[/tex]

[tex]\sigma_{s} = 1.58113883[/tex]

ACCESS MORE