State the horizontal asymptote of the rational function. For full credit, explain the reasoning you used to find the horizontal asymptote. F(x) =quantity x plus nine divided by quantity x squared plus four x plus two

Respuesta :

F(x) = [tex]\frac{x + 9}{x^{2} + 4x + 2}[/tex]

For horizontal asymptote, evaluate only the term of the numerator (top) and denominator (bottom) that has the greatest exponent.  F(x) = [tex]\frac{x}{x^{2}}[/tex].

**************************************************************************************

If n > m, the asymptote is: y = ∞, so asymptote does not exist

If n = m, then the asymptote is the ratio of the coefficients: y = [tex]\frac{coefficient (of numerator)}{coefficient (of denominator)}[/tex]

If n < m, then asymptote is: y = [tex]\frac{1}{infinity}[/tex], so y = 0

**************************************************************************************

F(x) = [tex]\frac{x}{x^{2}}[/tex]   ⇒   y = [tex]\frac{1}{infinity}[/tex]  ⇒  y = 0

Answer: y = 0



Answer:

y=0

Step-by-step explanation:

ACCESS MORE