given ∆JKL : ∆XYZ, find x.
A. 10
B. 12
C. 16
D. 20

ΔJKL : ΔXYZ
for two similar triangles we have this property:
[tex] \frac{JK}{XY} =\frac{KL}{YZ} [/tex]
plugging the given values to find x
[tex] \frac{6}{9} =\frac{8}{x} [/tex]
cross multiplying ,
6*x=8*9
6x =72
x=12