Answer:
[tex]x=-9, \quad x=\dfrac{1}{4}[/tex]
Step-by-step explanation:
Given function:
[tex]f(x)=(4x-1)(x+9)[/tex]
The roots of a function are the x-values for which the function equals zero. Therefore, to find the roots, set the function to zero and solve for x.
Set the function to zero:
[tex]\implies f(x)=0[/tex]
[tex]\implies (4x-1)(x+9)=0[/tex]
Zero Product Property
If a ⋅ b = 0 then either a = 0 or b = 0 (or both).
Apply the zero product property:
[tex](4x-1)=0 \implies x=\dfrac{1}{4}[/tex]
[tex](x+9)=0 \implies x=-9[/tex]
Therefore, the roots of the given function are:
[tex]x=-9, \quad x=\dfrac{1}{4}[/tex]