Respuesta :

Answer:

[tex]x=-9, \quad x=\dfrac{1}{4}[/tex]

Step-by-step explanation:

Given function:

[tex]f(x)=(4x-1)(x+9)[/tex]

The roots of a function are the x-values for which the function equals zero.  Therefore, to find the roots, set the function to zero and solve for x.

Set the function to zero:

[tex]\implies f(x)=0[/tex]

[tex]\implies (4x-1)(x+9)=0[/tex]

Zero Product Property

If a ⋅ b = 0 then either a = 0 or b = 0 (or both).

Apply the zero product property:

[tex](4x-1)=0 \implies x=\dfrac{1}{4}[/tex]

[tex](x+9)=0 \implies x=-9[/tex]

Therefore, the roots of the given function are:

[tex]x=-9, \quad x=\dfrac{1}{4}[/tex]

ACCESS MORE