Respuesta :
[tex] \bf slope = m = \cfrac{rise}{run} \implies
\cfrac{ f(x_2) - f(x_1)}{ x_2 - x_1}\impliedby
\begin{array}{llll}
average~rate\\
of~change
\end{array}\\\\
-------------------------------\\\\
f(t)= t^2 \qquad
\begin{cases}
t_1=3\\
t_2=3+\frac{1}{1,000,000}\\
\qquad 3+0.000001\\
\qquad 3.000001
\end{cases}\implies \cfrac{f(3.000001)-f(3)}{3.000001-3}
\\\\\\
\cfrac{9.000006000001~~-~~9}{0.000001}\implies \cfrac{0.000006000001}{0.000001}\implies 6.000001 [/tex]
The average speed is the average rate of change of the function.
The average speed during the 1 millionth of a second after t=3 is 6 cm/s
The function is given as:
[tex]\mathbf{f(t)=t^2}[/tex]
The average rate of a function is:
[tex]\mathbf{f'(t)=\frac{f(b) - f(a)}{b - a}}[/tex]
1 millionth of a second after t=3 means that:
[tex]\mathbf{a = 3}[/tex]
[tex]\mathbf{b = 3.000001}[/tex]
So, we have:
[tex]\mathbf{f'(t)=\frac{f(3.000001) - f(3)}{3.000001 - 3}}[/tex]
[tex]\mathbf{f'(t)=\frac{f(3.000001) - f(3)}{0.000001}}[/tex]
Expand the numerator
[tex]\mathbf{f'(t)=\frac{3.000001^2 - 3^2}{0.000001}}[/tex]
[tex]\mathbf{f'(t)=\frac{0.000006}{0.000001}}[/tex]
[tex]\mathbf{f'(t)=6 }[/tex]
Hence, the average speed during the 1 millionth of a second after t=3 is 6 cm/s
Read more about average speed at:
https://brainly.com/question/14720934