Respuesta :

Answer:

[tex]u(x)=\ =\ e^x(xcosy\ -\ ysiny)\ \textrm{is harmonic.}[/tex]

[tex]\textrm{conjugate function},\ v\ =\ 2e^x(xsiny\ +\ ycosy)\ +\ c[/tex]

Step-by-step explanation:

As given in question,

  • [tex]u(x)\ =\ e^x(xcosy\ -\ ysiny)[/tex]

       [tex]=\ e^x.xcosy\ -\ e^x.ysiny[/tex]

[tex]=>\ u'_x(x)\ =\ e^x.cosy\ +\ xe^xcosy\ -\ ye^xsiny\\\\=>\ u''_x(x)\ =\ e^xcosy+e^xcosy+xe^xcosy-e^xysiny\\\\=>\ u'_y(x)\ =\ -e^x.xsiny\ -\ e^xsiny\ -\ e^x.ycosy\\\\=>\ u''_y(x)\ =\ -xe^xcosy\ -\ 2e^xcosy\ +\ e^x.ysiny[/tex]

For a system to be harmonic,

[tex]\dfrac{\partial^2 u}{\partial x^2}\ +\ \dfrac{\partial^2 u}{\partial y^2}\ =\ 0[/tex]

From the above calculated value we can see that

[tex]\dfrac{\partial^2 u}{\partial x^2}\ +\ \dfrac{\partial^2 u}{\partial y^2}[/tex]

[tex]=\ e^xcosy+e^xcosy+xe^xcosy-e^xysiny\ -\ xe^xcosy\ -\ 2e^xcosy\ +\ e^x.ysiny[/tex]

= 0

So, given function u(x) is harmonic.

Now to find conjugate function of u,

[tex]dv\ =\ \dfrac{\partial v}{\partial x}.dx\ +\ \dfrac{\partial v}{\partial y}.dy[/tex]

According to Cauchy-Riemen Equation,

[tex]\dfrac{\partial u}{\partial x}\ =\ \dfrac{\partial v}{\partial y}\\\\\dfrac{\partial u}{\partial y}\ =\ -\dfrac{\partial v}{\partial x}[/tex]

So, we4 can write the above equation as,

[tex]dv\ =\ -\dfrac{\partial u}{\partial y}dx\ +\ \dfrac{\partial u}{\partial x}dy[/tex]

on  putting the values, we have

[tex]dv\ =\ -(-e^x.xsiny\ -\ e^xsiny\ -\ e^x.ycosy)dx\ +\ (e^x.cosy\ +\ xe^xcosy\ -\ ye^xsiny)dy[/tex]

on integrating both side, we get

[tex]\int{dv}\ =\ \int{e^x.xsiny\ +\ e^xsiny\ +\ e^x.ycosy)dx}\ +\ \int{(e^x.cosy\ +\ xe^xcosy\ -\ ye^xsiny)dy}[/tex]

[tex]=>\ v\ =\ 2xe^xsiny\ +\ 2ye^xcosy\ +\ c[/tex]

        [tex]=\ 2e^x(xsiny\ +\ ycosy)\ +\ c[/tex]

hence, the conjugate equation can be given by

[tex]v\ =\ 2e^x(xsiny\ +\ ycosy)\ +\ c[/tex]

             

ACCESS MORE