Use a(x) and b(x) shown below to evaluate the given expressions.
a(x) = 3x - 1
b(x) = 2^x
Selections below:
![Use ax and bx shown below to evaluate the given expressions ax 3x 1 bx 2x Selections below class=](https://us-static.z-dn.net/files/ded/f81efd057ff58d15296613aa0f328883.png)
Hello!
Let's begin with question 1, 2a(x) · b(x) = ?
2(3x - 1) · [tex] 2^{x} [/tex]
[tex] 2^{x} [/tex] · (6x - 2)
Question 2, a(x) + 2b(x) = ?
3x - 1 + 2([tex] 2^{x} [/tex])
Question 3, [tex] \frac{b(x)}{2a(x)} [/tex] = ?
[tex] \frac{2^{x}}{2(3x - 1)} [/tex]
[tex] \frac{2^{x}}{6x - 2} [/tex]
Question 4, 2a(x) + b(x) = ?
2(3x - 1) + [tex] 2^{x} [/tex]
6x - 2 + [tex] 2^{x} [/tex]
Question 5, a(x) - b(2x) = ?
3x - 1 - [tex] 2^{2x} [/tex]