Respuesta :

gmany
[tex]19+2\ln x=25\ \ \ |-19\\\\2\ln x=6\ \ \ |:2\\\\\ln x=3\iff x=e^3[/tex]

[tex]\text{Used de.finition of the logarithm:}\ \ \ \log_ab=c\iff a^c=b [/tex]



Answer:

[tex]x=e^3[/tex]

Step-by-step explanation:

  • The first step is to pass 19 to subtract the other side

[tex]2\cdot ln(x)=25-19[/tex]

[tex]2\cdot ln(x)=6[/tex]

  • The second step is to pass the 2 to divide the other side

[tex]ln(x)=\frac{6}{2}[/tex]

[tex]ln(x)=3[/tex]

  • The final step is take into account the general form of logarithmic expression.

[tex]ln(a)=b[/tex]    ------->     [tex]e^b=a[/tex]

According to the the previous, if we have [tex]ln(x)=3[/tex], the value of x would be:

[tex]e^3=x[/tex]

[tex]x=e^3[/tex]

ACCESS MORE