Respuesta :
[tex]19+2\ln x=25\ \ \ |-19\\\\2\ln x=6\ \ \ |:2\\\\\ln x=3\iff x=e^3[/tex]
[tex]\text{Used de.finition of the logarithm:}\ \ \ \log_ab=c\iff a^c=b [/tex]
[tex]\text{Used de.finition of the logarithm:}\ \ \ \log_ab=c\iff a^c=b [/tex]
Answer:
[tex]x=e^3[/tex]
Step-by-step explanation:
- The first step is to pass 19 to subtract the other side
[tex]2\cdot ln(x)=25-19[/tex]
[tex]2\cdot ln(x)=6[/tex]
- The second step is to pass the 2 to divide the other side
[tex]ln(x)=\frac{6}{2}[/tex]
[tex]ln(x)=3[/tex]
- The final step is take into account the general form of logarithmic expression.
[tex]ln(a)=b[/tex] -------> [tex]e^b=a[/tex]
According to the the previous, if we have [tex]ln(x)=3[/tex], the value of x would be:
[tex]e^3=x[/tex]
[tex]x=e^3[/tex]