Answer:
The stepwise solution of the above problem is given below.
Step-by-step explanation:
Given :
[tex]\rm ln(1+x) = x - \dfrac {x^2}{2}+\dfrac {x^3}{3}-\dfrac {x^4}{4}+...... +(-1)^(^n^+^1^)\dfrac{x^n}{n}[/tex] ------------ (1)
Calculation :
a) Repace x with x/3 in equation (1) and then multiply both the sides by x.
[tex]\rm ln(1+\dfrac{x}{3}) = \dfrac{x}{3} - \dfrac {x^2}{3^2 \times2}+\dfrac {x^3}{3^3\times3}-\dfrac {x^4}{3^4 \times 4}+...... +(-1)^(^n^+^1^)\dfrac{x^n}{3^n \times n}[/tex]
[tex]\rm xln(1+\dfrac{x}{3}) =\dfrac{ x^2}{3} - \dfrac {x^3}{3^2 \times2}+\dfrac {x^4}{3^3\times3}-\dfrac {x^5}{3^4 \times 4}+...... +(-1)^(^n^+^1^)\dfrac{x^n^+^1}{3^n \times n}[/tex]
General term,
[tex](-1)^n^+^1 \dfrac{x^n^+^1}{3^n\times n}[/tex]
b) Series converges at
[tex]x\epsilon (-3,3)[/tex]
At x = -3, the general term becomes
[tex](-1)^n^+^1\dfrac{(-3)^n^+^1}{3^n\times n}[/tex]
[tex](-1)^2^n^+^2 \dfrac{3}{n}[/tex]
[tex](-1)^2^n^+^2[/tex] is even
[tex]\rm \sum_{n=1 }^{\infty} \dfrac {3}{n} (diverges\; through\; harmonic\; series)[/tex]
Diverges at x = -3
Now, at x = 3 general term becomes
[tex](-1)^n^+^1\dfrac{(3)^n^+^1}{3^n\times n}[/tex]
[tex](-1)^n^+^1 \dfrac{3}{n}[/tex]
[tex]\rm 3\sum_{n=1 }^{\infty} \dfrac {3}{n}[/tex]
Therefore, interval of convergence is (-3,3)
c) In part a) we wrote all the terms. The neglecting term term in the alternating series of f is
[tex]- \dfrac{x^5}{3^4 \times 4}[/tex]
hence,
[tex]\rm |P_4(2)- f(2)| \leq \left | -\dfrac{2^5}{3^4\times4} \right | = \dfrac{8}{81}[/tex]
For more information, refer to the link given below
https://brainly.com/question/22550032?referrer=searchResults