Parameterize the triangle by
[tex]\mathbf s(u,v)=(1-v)((1-u)\langle1,1,0\rangle+u\langle2,1,2\rangle)+v\langle2,3,3\rangle[/tex]
[tex]\iff\mathbf s(u,v)=\langle1+u+v-uv,1+2v,2u+3v-2uv\rangle[/tex]
where [tex](u,v)\in[0,1]^2[/tex]. Then the surface element is
[tex]\mathrm dS=\|\mathbf s_u\times\mathbf s_v\|\,\mathrm du\,\mathrm dv=\sqrt{21}(1-v)\,\mathrm du\,\mathrm dv[/tex]
and the area of the triangle is
[tex]\displaystyle\iint_{\mathcal T}\mathrm dS=\sqrt{21}\int_{v=0}^{v=1}\int_{u=0}^{u=1}(1-v)\,\mathrm du\,\mathrm dv=\frac{\sqrt{21}}2[/tex]
To confirm this result, we can determine the length of each side of the triangle - they are [tex]\sqrt5[/tex], [tex]\sqrt{14}[/tex], and [tex]\sqrt 5[/tex] - then apply Heron's formula. If [tex]s[/tex] is the semiperimeter, then [tex]s=\dfrac{2\sqrt5+\sqrt{14}}2[/tex], and the area is
[tex]\sqrt{s(s-\sqrt5)(s-\sqrt5)(s-\sqrt{14})}=\dfrac{\sqrt{21}}2[/tex]
as expected.