Answer:
The limit of the function does not exist.
Step-by-step explanation:
If [tex]lim_{x\rightarrow c}f(x)\rightarrow L[/tex], then L is the limit of the function at x=c.
The limit of a function exist if left hand limit at a point is equal to the right hand limit at that point.
[tex]lim_{x\rightarrow c^-}f(x)=lim_{x\rightarrow c^+}f(x)[/tex]
From the given graph it is clear that the left hand limit of the function is
[tex]lim_{x\rightarrow 2^-}f(x)=3[/tex]
The right hand limit of the function is
[tex]lim_{x\rightarrow 2^+}f(x)=-2[/tex]
Since [tex]lim_{x\rightarrow c^-}f(x)\neq lim_{x\rightarrow c^+}f(x)[/tex], therefore the limit of the function does not exist.