Respuesta :
Answer:- B is the right answer,we get[tex]\frac{x\cdot\ x^4}{y^2\cdot\ y^6}[/tex] after negative exponents have been eliminated.
Explanation:-
Given expression :- [tex]\frac{xy^{-6}}{x^{-4}y^2},x\neq 0\ and\ y\neq0[/tex]
Rewriting the expression
[tex]\frac{xy^{-6}}{x^{-4}y^2}=\frac{x}{x^{-4}}\times\frac{y^{-6}}{y^2}[/tex]
Now, to eliminate the negative exponents multiplying and dividing the expression by [tex]x^{4}\ and \ y^{6}[/tex] ,we get
[tex]\frac{x}{x^{-4}}\times\frac{x^4}{x^4}\times\frac{y^{-6}}{y^2}\times\frac{y^6}{y^6}=\frac{x\cdot\ x^4}{x^{-4}\cdot\ x^4}\times\frac{y^{-6}\cdot\ y^6}{y^2\cdot\ y^6}[/tex]
we know that [tex]a^n\times\ a^m=a^{n+m}[/tex] [by exponents law]
[tex]\Rightarrow\frac{x\cdot\ x^4}{x^{-4+4}}\times\frac{y^{-6+6}}{y^2\cdot\ y^6}=\frac{x\cdot\ x^4}{x^{0}}\times\frac{y^{0}}{y^2\cdot\ y^6}=\frac{x\cdot\ x^4}{y^2\cdot\ y^6}[/tex] ....> which is option B.
Therefore B is the right answer.