Yuri invests $2,000 in an account with compound interest at 6%. Maria invests $3,500 in an account with compound interest at 4%. Using the rule of 72, T=72/R how many years with it take Yuri and Maria to double their money?

Respuesta :

Yuri’s money will double in approximately 12 years, and Maria’s money will double in approximately 18 years.

Answer:

Yuri's money would double approximately in 12 years and Maria's money would double approximately in 18 years.

Step-by-step explanation:

By using Rule of 72, [tex](\frac{72}{r})[/tex] we can calculate how many years it would take money to double.

Yuri invests $2,000 in an account with compound interest at 6%

Therefore, we use this formula [tex](\frac{72}{r})[/tex] where r = rate of interest.

= [tex](\frac{72}{6})[/tex] = 12 years

Maria invests $3,500 in an account with compound interest at 4%

= [tex](\frac{72}{4})[/tex] = 18 years

Yuri's money would double approximately in 12 years and Maria's money would double approximately in 18 years.

ACCESS MORE