Respuesta :
"which formula can be used to find the nth term of the geometric system below,
1/6, 1, 6,36"
The correct answer is D, [tex] a_{n} [/tex]=1/6·6^n-1
1/6, 1, 6,36"
The correct answer is D, [tex] a_{n} [/tex]=1/6·6^n-1
Answer:
[tex]a_n=a\cdot r^{n-1}\text{is the formula for used for nth term of a geometric series}[/tex]
And nth term of given geometric sequence is [tex]a_n=36[/tex]
Step-by-step explanation:
We have been given a geometric series
[tex]\frac{1}{6},1,6,36[/tex]
Now, we have a formula for [tex]n^{th}[/tex] term of a geometric sequence
[tex]a_n=a\cdot r^{n-1}[/tex]
Here, [tex]a=\frac{1}{6}[/tex]
[tex]\text{common ratio that is r}=6[/tex]
[tex]\text{number of terms }n=4[/tex]
On substituting the values in the formula we will get
[tex]a_n=\frac{1}{6}\cdot 6^{4-1}[/tex]
[tex]a_n=\frac{1}{6}\cdot 6^{3}[/tex]
[tex]a_n=\ 6^{2}[/tex]
[tex]a_n=36[/tex]
Therefore, nth term of given sequence is [tex]a_n=36[/tex]