Respuesta :

"which formula can be used to find the nth term of the geometric system below, 
1/6, 1, 6,36"
The correct answer is D, [tex] a_{n} [/tex]=1/6·6^n-1

Answer:

[tex]a_n=a\cdot r^{n-1}\text{is the formula for used for nth term of a geometric series}[/tex]

And nth term of given geometric sequence is [tex]a_n=36[/tex]

Step-by-step explanation:

We have been given a geometric series

[tex]\frac{1}{6},1,6,36[/tex]

Now, we have  a formula for  [tex]n^{th}[/tex]  term of a geometric sequence

[tex]a_n=a\cdot r^{n-1}[/tex]

Here, [tex]a=\frac{1}{6}[/tex]

[tex]\text{common ratio that is r}=6[/tex]

[tex]\text{number of terms }n=4[/tex]

On substituting the values in the formula we will get

[tex]a_n=\frac{1}{6}\cdot 6^{4-1}[/tex]

[tex]a_n=\frac{1}{6}\cdot 6^{3}[/tex]

[tex]a_n=\ 6^{2}[/tex]

[tex]a_n=36[/tex]

Therefore, nth term of given sequence is [tex]a_n=36[/tex]




ACCESS MORE