[tex]\frac{dv}{ds} = \frac{s+1}{sv + s}\ \Rightarrow\ \frac{dv}{ds} = \frac{s+1}{s(v+1)}\ \Rightarrow\ (v+1) \frac{dv}{ds} = \frac{s+ 1}{s}\ \Rightarrow \\ \\
(v+1)dv = (1 + \frac{1}{s} )ds\ \Rightarrow\ \int (v+1)dv = \int (1 + \frac{1}{s})ds \Rightarrow \\ \\
\frac{v^2}{2} + v = s + \ln |s| + C\ \Rightarrow\ v^2 + 2v = 2s + 2\ln |s| + 2C[/tex]
complete the square
[tex]Complete\ the\ square\\
v^2 + 2v + 1 = 2s + 2\ln |s| + 2C + 1 \ \Rightarrow\ \\
(v+1)^2 = 2s + 2\ln|s| + 2C + 1\ \Rightarrow\ \\
v+1 = \pm \sqrt{ 2s + 2\ln|s| + K} \\
v = -1 \pm \sqrt{ 2s + 2\ln|s| + K},\ \text{where $K= 2C + 1$}[/tex]